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AN ENTROPY MAXIMU PRINCIPLE AND RELAXATION PHENOMENA

I. Introduction

In this paper we consider a general approach to the description of the

relaxation of an open system based on a maximum Shannon entropy principle.
1

The definition of the Shannon entropy involves an integral over the full

temporal epoch of the relaxation and will be designated the epoch entropy.

The definition of the epoch entropy is based on a dimensionless quantity

termed the incremental relaxation density (IRD). The dimensionless character
0

of the IRD is maintained by the introduction of a unit of time, and the inte-

gral of the IRD over the full epoch is unity so it is normalized. The IRD

itself is defined in terms of the approach to equilibrium of the singlet

probability for a particular state in a discrete state space used to describe

the system of interest. The singlet probability for this state is assumed to

approach its equilibrium value monotonically, and at a rate that is equal to

the slowest among all states. When such a state exists, it clearly controls

the ultimate approach of the system to equilibrium, and the relaxation is said

to be simple. We deal only with simple relaxation in this paper. 0

The IRD is defined in such a way that it is positive with negative slope

throughout the epoch of relaxation. It therefore has the properties of a
2

Lyapounov function, and provides a measure of the status of the relaxation

process. Furthermore the IRD is normalized so that it also has the mathemati-

cal properties of a probability density. It is therefore an appropriate

quantity to be used in the definition of a Shannon (epoch) entropy which 0

provides a measure of information about the relaxation process throughout the

epoch for the system of interest.

We maximize the epoch entropy subject to minimal constraints for a relax- q

ation process, namely, that the IRD is normalized, and that there is a mean

Manuscript approved April 30, 1984.
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time of relaxation that corresponds to the first moment of the IRD. The

resulting form for the IRD that assures maximum epoch entropy is a linear

exponential. Since it is derived directly from a maximum entropy principle

subject only to the minimum constraints necessary to specify a relaxation

process, we consider the linear exponential to be the fundamental form for the

IRD. With this IRD in hand, we can find a general expression for maximum

epoch entropy. However, we note that the time scale on which the IRD takes a

linear exponential form is not in general the time scale on which measurements

are made. We argue that the value of maximum epoch entropy should not depend

on the time scale that is used to describe it. We are led thereby to enunci-

ate a principle of invariance of maximum epoch entropy in which the maximum

epoch entropy evaluated in terms of the transformed IRD is equal to the maxi-

mum epoch entropy evaluated in terms of the fundamental IRD. This principle

leads to an invariance relation between units of time on the fundamental time

scale and a transformed time scale.

We then use some general arguments to rationalize the use of a monomial

(with positive fractional power) time scale transformation in the description

of relaxation phenomena in an open system. The fundamental form corresponds

to the case when the monomial is at the linear limit. However the general

monomial transformation leads to an empirically well-established 3 description

of relaxation phenomena that also coincides with a description based on an

existing microscopic model of relaxation.4'5  Furthermore the invariance

relation between units of time that is derived from the principle of invari-

ance of maximum epoch entropy leads to renormalization relations for scaling

parameters and activation energies that enter into the physical manifestations

of these units. Similar renormalization relations also arise in the aforemen-

tioned microscopic model,4,5 and have been repeatedly verified empirically.
3
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II. The Incremental Relaxation Density (IRD) and

Maximum Temporal Epoch Entropy

We considered a perturbed open system that is relaxing to equilibrium

with order parameter (time) 0=6-00, where 0 denotes the time when the relaxa-

tion begins. The system is taken to be characterized by a singlet probability

P s() over a discrete state space with states labelled by s. Ps () are the 0

equilibrium values of Ps (0) so a state retains its identity throughout the

relaxation process. Since Ps () are state probabilities, we have for all 0

2P (0) =1 (1) 

Among the states s, there is a subset consisting of at least two states

for which the relaxation is slowest. These will be called the slowest relax-

ing states. The evolution of the probabilities associated with such states

therefore control the ultimate approach to equilibrium. We say that a relaxa-

tion is simple if for at least one of the slowest relaxing states, the state

probability approaches its equilibrium value monotonically. Let us designate

that state (or a chosen one of a number of such states) to be the rth state

with probability P r(6) and equilibrium probability Pr (o). We now make a weak

assumption (to be strengthened below) that because of the nature of a relaxa-

tion process, Pr(6) approaches Pr(0) sufficiently rapidly that the integral of

P r(6)-Pr () over the full epoch of the relaxation process is finite.

= J[Pr(0)-P (0)]dO/T (2)

Here Nr has the unchanging sign of the difference P (0)-Pr(o), and T0 is a

(for the moment arbitrary) constant unit of time on the 0-scale so that the 0

integral is dimensionless.

We now observe that for simple relaxation, we may define a dimensionless

incremental relaxation density (IRD) to be S

f(6) = N 1 [P (0)-P(00)] (3)

3



The IRD is a positive semi-definite function of G with negative slope that has

its maximum at 0=0 and which vanishes as 0-. Therefore by its positivity and

negative slope for e0o, the IRD has the properties of a Lyapounov function.

In addition the integral of the IRD over the epoch is just unity. Thus the

IRD also has the properties of a dimensionless probability density. Its

accumulation integral

F(6) = .ff(O')de'/T 8 , F(0) = 1 (4)

is positive with positive slope for all e0. Now the properties of F(8) could

also arise from an epoch integral over a density function which is positive

but with a slope whose sign changes during the epoch. It is interesting to

speculate that the conditions on a Lyapounov function may be similarly
I

weakened so that the requirement of negative slope is replaced by a condition

that the accumulation integral of a generalized Lyapounov function over the

epoch is finite. Of course, then the relaxation would not be simple so we

leave this point for further consideration elsewhere.

We have already observed that the slowest relaxing states and hence also

the IRD describe the status of the ultimate relaxation of the system to equi-

Ilibrium. Further as also previously noted, the 11W has the mathematical

properties of a dimensionless probability density. Thus we are led in analogy

with procedures used by ShannonI to define a Shannon temporal epoch entropy S@

as a measure of information about the relaxation process over its full epoch.

S= -fof(O)Qn[f(6)]de/r (5)

It should be noted that S is an implicit function of e 0

We now require that there is a minimum of information about the relaxa-

tion process subject only to those constraints appropriate for specifying the

process to be a relaxation process. Equivalently, this means the epoch

entropy is a maximum subject to appropriate constraints. We already have the

4
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condition that the IRD is normalized, by its definition Eq. (3). In addition,

a relaxation process is typically characterized by a relaxation time. We

specify the relaxation time to be represented by the first moment of the IRD,

namely

<6> = f'Of(6)dO/T0  (6)

This provides a somewhat more stringent condition on the rapidity with which

P r() approaches Pr () than required for Eq. 2.

Now introducing two Lagrange multipliers A and A2 in the usual way, we

obtain from the variation of S0 that the maximum epoch entropy occurs for

fM (0) = exp[-(X1 + A26)] (7)

Consistency with Eqs. (3) and (6) allows us to determine XI and X2"

exp(-A I) = T1/<6> , A2 = <6>-I (8)

Then the IRD consistent with the maximum epoch entropy has the form S

fM(6) = [T /<6>] exp[-(8/<O>)] (9)

The maximum epoch entropy can itself be determined to be

S = 1 + fnt<>-2nT (10)

so the specific value of S0 is determined modulo a choice for T0 .

There are several important observations that should be made concerning S

Eqs. (9) and (10). First from Eq. (9) we note that the linear exponential

form is consistent with the Lyapounov function properties of the IRD. Also

the linear exponential form for the IRD represents a fundamental form in the S

sense that it arises from the maximum epoch entropy principle subject only to

the minimum constraints necessary to characterize the (simple) relaxation

process. However, it has long been recognized 6 that an exponential form is q

5



0

not completely appropriate for the description of the dynamics of decay at the

shortest times (or at the highest frequencies). Therefore the point 6=0 is

physically singular. Here, we understand this to mean that there must be a

pre-relaxation regime, before simple relaxation begins, that may be character-

ized by a high frequency cutoff wc. Thus the present discussion is valid only

ccfor long times corresponding to frequencies lower than w c .  Empirical evi-

dence 3 indicates that for many cases wc may be in the range 10 8-10 11Hz for

relaxation phenomena in condensed matter.

It is also useful to note that although f (0)d0/T0 is independent of the

time unit, fM () alone takes on a particularly simple form when T is taken to

equal to <0>. Namely fM () is then equal to unity at 0=0 and homogeneous in

6
6/<0>. Thus <> is a natural time unit for the 0 time scale. A similar

simplification occurs for S which just becomes unity when r=<O>. However
M

for any particular choice of TO, S is an epoch integral whose value should be
00

independent of the time scale on which it is described. This condition of

invariance serves to place a stringent condition on the relationship between

r and the unit of time on the new time scale. This is probably obvious for a

linear time scale transformation but we are interested here in a wider class

of time scale transformations. We are motivated here by the fact that there

is no reason to believe that the time scales on which measurements are made
0

coincide with the time scale on which the IRD, fM (), appears in its funda-

mental linear exponential form.

III. An Invariance Relation for Time Scale Units 0

A time or order parameter is just a positive cumulative function that

increases monotonically from an origin. We have already introduced the 0 time

scale, its corresponding difference time scale 0=0-0 and its constant unit 0

0

6
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of time To. In a similar way, we introduce another time scale £ with differ-

ence time scale t=E-Eo, and constant unit of time Tt  From the context of

application, it is clear that we should align the respective origins 0 and E 0

since both represent the time when the (simple) relaxation process begins

(after a pre-relaxation time regime). Thus if

0=6(t) , e(t=o) = o .( )

We specify further that dO/dt is positive and finite everywhere except pos-

sibly at isolated points. For example, such an isolated point might be

expected at the end of the pre-relaxation regime which corresponds to the

origin for the time regime of simple relaxation.

We can now describe the incremental relaxation de - (IRD) and maximum

epoch entropy in terms of t. Namely, we obtain a tra Lurmed IRD g M(t) by a

direct transformation from f (0)d0/T to g M(t)dt/Tt. 4 find using Eq. (9)

gM(t) = exp{-[6(t)/<O>]}[T t/< > ][dG(t)/dtl . (12)

The maximum epoch entropy is now taken to be form-invariant so that it is

written in terms of g M(t) and an integral over the total epoch on the t-scale.

St = gM(t) ngM(t)dt/It = 1+.en(<6>)

- f 0 d6 dO (13)J e x p [ -  n t d t ) 6 >

Within the integral on the right hand side, d6/dt is expressed as a function 0

of <0> and 0/<O>. We now use the requirement that SM is invariant independent

of the time scale used in its evaluation together with Eqs. (10) and (13) to

obtain a general invariance condition. 0

2nr/t= ofexp[-(O/<O>)j1n[d0/dtjdO/<6> (14)

7
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To understand the ramifications of this relationship we should consider a

specific time scale transformation. The immediate problem then is to choose a

time scale that is meaningful for measurements of relaxation phenomena.

IV. A Measurement Time Scale for Relaxation

We observe that even after a time scale transformation, exp[-O(t)/<O>] is

positive for all O(t), t>O, has value unity at 0(0) because of Eq. (11), and

vanishes as 0(t) 8( ). It was previously argued 7 that such a decay in an open

system can be described in terms of the squared magnitude Ic(t)1 2 of the

antocorrelation amplitude of a decaying state JR>. That argument may be

sharpened as follows. A density matrix representing the system at any time is

a Hermitian trace-class operator with eigenvalues that are positive, real, and S

nonvanishing, and which lie between 0 and 1. The eigenvalues belong to the

complete set of the eigenstates of the density matrix which includes both

non-stationary decaying and stationary states. In equilibrium the decaying S

states no longer have non-vanishing eigenvalues so that the residual eigen-

values of the density matrix belong only to its stationary eigenstates. The

decaying states are therefore not relevant for the description of equilibrium.

Hence the approach of the incremental relaxation density (IRD) to zero matches

the vanishing of the autocorrelation of a decaying state. In such a case

exp[-a(t)/<6>] = Ic(t)1 2  (15)

where

* c(t) = <Rlexp(-(iDt)IR> , t > 0 (16)

The state JR> is associated with the continuous spectrum of the development

operator D and is orthogonal to all the stationary eigen-states of the density

* matrix operator. It is assumed that the development operator has a non-

singular continuous spectrum. If P denotes the spectral projection of D,

8
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D = fe dp = f&I><z~d& , (17)

then the function <Rip IR> is absolutely continuous. Its derivative

p(C) = d <RIp IR> = <R1><fR> (18)

can be interpreted as the spectral distribution of the state IR>. In other

E+AEwords, the integral +E p(&)d& is the probability that the eigenvalue of the 0

state IR> lies in the interval (E,E+AE). The function p(e) has the following

properties.

i) p(e) 2 0

ii) fp(&)ds = 1, since <RIR> = 1 (19)

iii) p(e) = 0 , E t Pa

Thus p(e) is a probability density. Now it follows that c(t)=<Rjexp(-iDt)IR>,

t t 0, can be expressed as

c(t) = fexp(-igt) p(&)ds (20)

Thus c(t) is a characteristic function for the spectral probability density of

the decaying state.

We now note that there is some arbitrariness in the specification of IR>

and its spectrum. In general we consider 1R> to represent a decaying state

for a complex many-body system. Then the description of the decay should not

depend on an exact specification of the number of components in the system.

In other words we should obtain the same form of decay respectively for one

portion, or several portions of the system. Mathematically this means that

p(e) must be superposable probability density, as discussed by Rajagopal et

al. 8 so that p(&) must be a stable distribution. Recently Weron et al.9 have

considered the application of the mathematical theory of stable distributions

for systems with semibounded spectra to problems of interest in physics. Of

9



pertinence to present considerations is the result that for a semibounded

stable distribution, the appropriate characteristic function for causal time,

t:0, has squared magnitude

lc(t)I 2 = exp(-t b), a>0, 0<b<l, t0 (21)

A comparison with Eq. (15) then provides a time scale transformation appropri-

ate for the description of relaxation phenomena. Namely the fundamental time

scale is related to the time scale of measurement by

e = atb, a>0, 0<b<l, t 0 (22)

where a = 9<6>. We shall apply this time scale transformation in a discussion

of the invariance relation, Eq. (14), in the next section. Before that,

however, some remarks concerning Eq. (21) are appropriate.

We note first the form of Ic(t)I 2 in Eq. (21) is consistent with the

Paley-Wiener theorem in fourier transform theory.7'1 0  The Paley-Wiener

theorem states that a necessary and sufficient condition for the existence of

a semibounded p(&) (with properties given in Eq. (19)) which is the fourier

transform of a square integrable c(t) is thatiI
2 nc(t)l dt< (23)

1+t
2

This condition is guaranteed if for t-, Ic(t)I 2 is greater than or equal to

the right hand side of Eq. (21). The important point is that for the stable

distribution argument used here, Eq. (21) is an equality and valid throughout

the full epoch.

0 It should also be noted that although the limit b=l can never be reached,

b may approach arbitrarily close to 1. It is that latter limit that corre-

sponds to the fundamental form. The deviation of b from unity is a manifesta-

tion of the complex nature of the system as it appears on the time scale of

measurement.

10
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V. Parameter Renormalization

We now consider the effect of the time scale transformation Eq. (22) as
0

applied in Eq. (14). We obtain

1 1/b 1 y.en[ 'e <8 [<e>/a] _ (I 1 ) (24)

t

where y = 0.577215 is the Euler constant. If we now choose T0 to coin-

cide with the natural unit on the 0-scale, namely <>, we obtain the relation-

ship a

<0> = ab bexp[ (1-b)y]Ttb (25)

It is convenient to define a new time unit on the t-scale, namely

Tt = b exp[ (l-b)y/b]Tt (26)

so that

(b (27)<6> = a T t

Then using Eq. (12), we obtain for g M(t)dt/Tt

M - b - b-ig (t)dt/tt = exp[-(t/tt) b(t/t) dt/Tt

-M -g (t)dt/tt (28)

-M
The function g (t) is just the incremental relaxation density (IRD) on the

t-scale with time unit t '

It is useful to relate this IRD to a relaxation rate W(t) to facilitate

comparison with the usual description of relaxation phenomena. Note that the

unrelaxed portion at any time t is just

- 5 gM (t)dt/t = exp[-(t/l) b (29)

The relaxation rate in a particular time interval is just the ratio of g (t)/t

to the remaining unrelaxed portion, namely
11



W(t) = b(t/ )b-l (t-1 O<b<l (30)

We have previously discussed such time dependent relaxation rates, and used

a phenomenlogical introduction of a monomial time scale transformation for

their application in the description of relaxation phenomena. On the t-scale,

the relaxation rate decreases with time. Hence for measurements made on a

t-scale, the relaxation will appear to have a long tail.

The decay represented by Eq. (21) and the relaxation rate in Eq. (30) are

the prototypical forms observed in many types of relaxation experiments in a

wide range of condensed matter samples. Even more remarkable are the applica-

tions of Eq. (27). Its significance resides in the fact that the t-scale is

only the time scale of measurement and not the fundamental time scale for the

maximization of epoch entropy subject to the minimum constraints necessary to

specify a simple relaxation process. Thus parameter dependences determined

for Tt are only apparent. The actual dependencies are those that enter into

<0>. The two dependencies are related by Eq. (27).

For example, consider a material made of polymer with a relaxation time

dependent on the molecular weight, M, of its chemical building blocks. On the

fundamental scale, we take the relaxation time, for specificity, to have a

simple monomial dependence on M.

<0> = kM0 (31)

Then on the time scale of measurement, the relaxation time Tt has the depen-

dence

Tt , M P/D  (32)

Tt therefore has a power dependence that appears greater than it actually is

since O<b<l. If now we consider polymer samples with different values of M,

relaxation measurements will typically provide different values of the frac-

12



tional exponent b. The prediction of the invariance relation is that the

M-dependence of Tt will vary in such a way that 0 is the same for the samples

with different M. On the other hand, the measured 0/b would appear anomalous 0

without an understanding of the need for renormalization. Similarly it may

also be possible to change the fractional exponent b by changing the environ-

ment in which relaxation measurements are made. Then the prediction is that

the power of M that is measured for Tt changes with b in such a way that

again remains constant.

A more general application occurs in the case of the variation of <6> and

Tt with temperature. In the usual way we assume an Arrhenius dependence so

that

<6> = < O> exp(EA/kT) (33)

Here EA is an activation energy and <6,> is the relaxation time on the funda-

mental scale at (nominally) infinite temperature. For simplicity sufficient

for our present expository purposes, we consider that the fractional exponent

b to be independent of temperature. On the time scale of measurement, we find

Tt = (Tt) exp(E*/kT) (34) 0

Here E* is an effective activation energy. It is clear that for the invari-

A

ance relation Eq. (27) to hold, E* must be related to the actual activation
A0

energy EA by the renormalization relation

E* = EA/b (35)

Thus measured activation energies invariably seem to be greater than they S

actually are.

The remarkable feature of results like Eqs. (21), (30), (32) and (35) is

that they and their mutual dependencies are consistently verified by experi- S

13
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ment on many kinds of condensed matter for a wide range of relaxation phenom-

ena. This verification lends credibility to the ideas that have been invoked

in the present development. These include: the concept of incremental relax-

ation density for simple relaxation; the principle of maximum epoch entropy;

the existence of a fundamental time scale for simple relaxation; the need for

a time scale transformation to obtain the time scale of measurement; the

invariance of the value of the maximum epoch entropy when evaluated on dif-

ferent time scales; and the procedure presented in Sec. IV to justify the

choice of time scale to correspond to the time scale of measurement for relax-

ation phenomena.
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